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Abstract-Nonlinearities in the differential equations of motion of dynamical systems can play,
under certain conditions, such a dominant role that the motion described by linearized differential
equations bears no resemblance to the actual motion exhibited by the systems. For a structure,
nonlinearities are due to material behavior and to deformation. The latter are called "geometric
nonlinearities" and, even for linear (i.e., Hookean) materials and small deformations, their effect
can be dramatic. To investigate the nonlinear behavior of a dynamical system by making use of
analytical techniques, one must start the analysis by formulating a set of mathematically consistent
differential equations of motion for the system. Furthermore, the equations must be cast in a form
that makes them amenable to the application of known analytical methods, such as perturbation
techniques, to investigate the motion. The work presented in this paper addresses the formulation
of such equations for a class of multi-beam structures. Each beam in the structure may have arbitrary
cross section variation along its span, but behaves as inextensional. The structure may have any
number of beams and supports, and may carry any number of lumped masses along its span.
© 1998 Published by Elsevier Science Ltd. All rights reserved.

INTRODUCTION AND LITERATURE REVIEW

The differential equations of motion for dynamical systems, such as mechanical and
structural systems, are inherently nonlinear. It is well known that linearized differential
equations about the equilibrium solutions of dynamical systems (which are obtained from
a ~oiution ofnoniinear equatiom.} mayor may not yidd a 'Vaiid appmximation to th.e actuai
reiqot7seoltkesfslem,.ef/:,R lo£" f/:'£fsmd'22mot/oRsd'oout tkeeq:u/}/o£"/um tree..lo£"e,f"d'mq2e..
Haight and King, 1972; Ho et al., 1975, 1976; Crespo da Silva and Glynn, 1978a, 1978b).
A nonlinear analysis of the dynamics of such systems is of crucial importance of predicting
and fully understanding their behavior under the effect of applied loads. The first step in
an analysis based on nonlinear models is, generally, a first-order linearized analysis of small
pe.rturbed motions of t!l'c system aoout its stahk equi{ihrium so{utions. To determine the
effect of the nonlinearities, one may proceed with a higher-order perturbation analysis
of the motion. Such perturbation analyses are able to disclose the situations when the
n({)rl)meai)i)es'm:~ome·)m))l)"n'aTl\.'all0 '1.0y)i1D)-ID))\)n.'aTl'1. -o~'1.'a:'h~ 'a'1)\)1:1\in~~'Sl.~Th ~Te~\)Tl,,~

that are either impractical or nearly impossible to obtain with purely numerical simulation
methodologies. A thorough presentation of a number of perturbation methods, with appli­
cation to several discrete and continuous systems, is found in Nayfeh and Mook (1979).

The study of nonlinear dynamics of flexible systems has been the subject of a number
off investlg:atlons presented ln the llterature. "Both numencal and analytIcallnvestl,gatlons
ha.~'t,~"t,"t,'1> ~"'''t,s''t,'1>\.''t,~~~ '1.'1>~%~"t,'" ~f,. 'h~\.~~"'s.

Numerical investigations have the advantage of being able to deal with large systems.
However, numerical investigations of the nonlinear dynamics of flexible structural systems
present a number of well known problems. Such investigations have generally been confined
to obtaining numerical solutions to equations of motion with the objective of simulating
the time response of the system due to applied loads. Although results obtained from such
numerical simulations are certainly very useful for design purposes, they are generally
difficult (if not impossible) to interpret and to generalize in the presence of nonlinearities
due to the many possible choices for the system parameters and initial conditions for the
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motion. Some advance knowledge of the dynamical behavior of the system may even be
needed in order to avoid a partial, or even erroneous, interpretation of purely numerical
results. For example, analytical investigations have shown that different types of non­
linearities (namely, inertia and curvature nonlinearities) in the differential equations of
motion of a beam may act in such a way that their effects could nearly cancel themselves
for some range of excitation frequencies and system parameters (Crespo da Silva and
Glynn, 1978a, 1978b). By relying only on results of numerical simulations for such cases,
the investigator might reach the erroneous conclusion that the system is essentially linear
while, in fact, it is not. This was first shown in Crespo da Silva and Glynn (I 978b) for a
single beam. As disclosed in that reference, the effects of the same nonlinearities for different
values of excitation frequencies and system parameters can make the results of a linear
analysis totally incorrect, even for motions that might be labeled "small".

Analytical techniques such as perturbation methods play a significant role in the
analysis of the response of structural systems. They provide a great deal of insight into the
physics of a given problem and they allow the analyst to separate and handle the effects of
different nonlinearities in the system. However, they have been applied only to dynamical
systems with a relatively small number of degrees of freedom. For flexible systems, they
have been applied to simpler systems such as a single structural element, but not to complex
systems made of a number of interconnected elements.

The problem of dealing with structural systems that are composed of a number of
interconnected structural elements consists in the high dimensionality of such systems. This
has made them intractable with purely analytical methods. It is perhaps for this reason that
the work that addresses such systems has been confined to numerical investigations. Much
of that work deals with the development of numerical methods to obtain the static and/or
the dynamic response of the system.

A significant amount of work has been done by a number of investigators dealing
with numerical methods for the determination of the static deflection and the numerical
simulation of the dynamics of flexible structures. Such numerical work is exemplified in
Hsiao et al. (1979), Surana and Sorem (1989), Bathe and Bolourchi (1979), Belytschko et
al. (1977), Simo (1985), Simo and Vu-Quoc (1991), Cardona and Geradin (1988), Iura and
Atluri (1988), Park et al. (1991), Downer et al. (1992), and in the many references cited in
those papers. Reduction methods have also been used to improve the efficiency ofgenerating
numerical solutions to problems involving flexible structures, both for a single member and
for more complex structures. With such methods, the structure is approximated by a system
with a reduced number of properly selected degrees of freedom by appropriate choice of
motion coordinates. Such work is exemplified in Noor (1981, 1982, 1985), and in Noor and
Peters (1980a, 1980b). In the work presented in Noor (1982), the author also briefly
discusses the selection of the motion coordinates for structural dynamics problems with the
objective of numerically solving the finite element equations of motion in a more efficient
manner in order to obtain the response of the system as a function of time.

The analytical work that is found in the literature dealing with the dynamic response
of structural systems consists in investigations of the dynamic response of the system when
it is perturbed about its equilibrium position, including investigations that involve the
effects of nonlinearities in the motion of the system. Clearly, one needs to have an explicit
set of differential equations of motion to conduct such investigations. To perform such
investigations using perturbation techniques, the differential equation of motion need to be
cast in a form that contain polynomial nonlinearities in the motion variables when such
variables are perturbed about a particular solution (such as an equilibrium state) of the
system.

OBJECTIVE OF THE PRESENT WORK

The objective of this paper is to develop an explicit set of reduced-order nonlinear
differential equations of motion for a class of multi-beam structures. The equations are put
in a form suited for the use of analytical techniques for predicting nonlinear phenomena
and investigating nonlinear motions exhibited by the structure when its equilibrium state
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is perturbed. Analytical investigations based on such equations can yield a wealth of
information about the physics of the problem. The equations developed here are also suited
for designing nonlinear control systems for the structure taking into account the geometric
nonlinearities that appear due to bending of any of its members.

Of special relevance to the work presented here are the works in Crespo da Silva (1997)
and in Crespo da Silva and Glynn (1978a, 1978b).

In Crespo da Silva and Glynn (1978a), an explicit set of fully nonlinear partial
differential equations for inextensional beams were developed by taking into account all
the geometric nonlinearities (due to curvature and inertia) that occur when the beam
deforms. Those equations were then expanded about the equilibrium state of the beam for
the case when that state coincides with the undeformed state of the system. The expanded
differential equations developed in Crespo da Silva and Glynn (1978a) were reduced to
nonlinear integro-partial differential equations in Crespo da Silva and Glynn (1978b), and
the latter equations were then used to investigate analytically the nonlinear resonant
response of the system to an external excitation. This was done with a perturbation method
where the eigenfunctions obtained from the linearized differential equations were used in a
modal reduction Galerkin's technique to approximate the higher order partial differential
equations by a finite set of ordinary differential equations. Similar studies were presented
in Crespo da Silva (1988a, 1988b) for beams with fixed supports, which are extensional
beams.

In Crespo da Silva (1997), a set of reduced-order nonlinear ordinary differential
equations for inextensional beams were obtained directly by applying the modal reduction
technique to the expression for Hamilton's principle. Furthermore, the work in Crespo da
Silva (1997) allowed for arbitrary equilibrium deflection of the beam due to the application
of static loads and to the existence of any number of concentrated masses along the
beam's span. As in Galerkin's procedure, the spatial functions used in the modal reduction
technique in Crespo da Silva (1997) were chosen to be the eigenfunctions associated with
the linearized set of partial differential equations that govern the motion of the infini­
tesimally small perturbations about the equilibrium state of the system. The ordinary
differential equations obtained by such a direct procedure are the same as those obtained
by applying Galerkin's procedure to the nonlinear partial differential equations referred to
above, although the expressions for the coefficients of similar terms that appear in the two
sets of equations may look different from each other. However, an integration by parts in
the coefficients in any of the two sets of equations discloses the equivalency of the two sets
of equations.

The formulation presented in Crespo da Silva (1997) is extended here to a particular
class of multi-beam structures in planar motion. The structures under consideration may
be made of an arbitrary number, Nbc• m" of Hookean beams, connected in such a way that
each beam in the system can be approximated as inextensional. For such structures, the
axial component of the deformation of each of its members can be readily expressed in
terms of the transverse component (i.e., perpendicular to the undeformed direction of the
member) of the elastic deformation by making use of the inextensionality condition for
that member. Each beam in the structure is assumed to be straight, when undeformed, and
it may have variable cross section along its span (which imply arbitrary mass and stiffness
distribution). The connections between any two beams may consist of pins, welds, or sliding
joints. In addition, the structure may also carry any number Neone of concentrated masses
placed anywhere on the system. The reduced-order nonlinear differential equations of
motion formulated here account for nonlinear effects due to elastic deformation of its
members.

DEVELOPMENT OF THE REDUCED-ORDER MODEL

To develop a set of reduced-order nonlinear differential equations that approximate
the dynamic behavior of the entire structure, we start by dividing each beam in the structure
into a desired number of "elements". Each one of these elements will be referred to in the
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Fig. I. A beam element connected to another element.

sequel as a beam element, and the total number of beam elements in the structure is N e1em .

To begin with, let us then concentrate on the dynamics of an arbitrary beam element.
Figure 1 shows an arbitrary thin beam element i of the structure, before and after

deformation, connected to another beam element k at point Oi which, by definition, is at
the "left boundary" of element i. Before deformation, each beam element is straight and
untwisted. Each beam element i (for i = 1,2, ... , Ne1em) has length L i meters, distributed
mass density mi(si) Kg/meter and bending stiffness D; = E;I;(s,) Newton.meter2

, where E;
and Ii are, respectively, the modulus ofelasticity and the appropriate area moment of inertia
for the element's cross section (which will be referred to by S;). The cross section S; along
the element, with area A;, may be variable but the beam element is assumed to be made of
a Hookean material. The independent variable Si denotes arc length measured along the
deformed reference line of beam element i (which is line L; shown in Fig. 1).

The quantities with a caret (such as X;, Xb etc.) shown in Fig. 1 denote unit vectors.
The reference axes x and y shown in Fig. 1 maintain a constant direction in inertial space;
X and yare unit vectors along those directions. The x; and y; axes (with unit vectors Xi and
y;, respectively) are aligned with beam element i before deformation, with Xi inclined at an
angle IX; with the reference x-axis. If gravity is neglected (i.e., if the acceleration of gravity,
g, is set to zero by the user of the differential equations that will be developed in this paper),
the spatial orientation of the xy plane is arbitrary. Otherwise, the y reference line is taken
to be vertical, with the gravitational forces being directed along - y. The ~i and '1; unit
vectors are aligned with the principal directions of the element cross section after defor­
mation. Before deformation, beam element i is a straight line that is aligned with x;, and
the length of an infinitesimal segment M;Ni along Xi is dx;. After deformation, M; is located
at Mt, and the length of the same segment is ds;; the angle 8; shown in Fig. I is the angle
between Xi and ~; at Mt after deformation.

The vector C5CJ, = xs(t)x+ ys(t)y (see Fig. 1), from the inertial point 0 to any point Os
fixed to the plane of motion of the structure (shown as a rectangle in Fig. I), accounts for
a prescribed motion that plane may be forced to undergo in any direction parallel to the
x-y plane. The quantities x,(t) and Y,(t), where t denotes time, are the x and y inertial
components of the external "base excitation" the entire structure may be subjected to.

The elastic deformation vector of a point M; on the reference line Xi of beam element
i can be written as u;(s;, t)x;+ VieS;, t)y;, where v;(s;, t) is the elastic displacement of M i due to
bending. Let eo; = osJox; - 1 = J (I + ouJox;) 2 + (ovJox;) 2 -I. For inextensional beam
elements, eo; = O. Here, the small effect of shear will be neglected, and the orientation of
the cross section Si is perpendicular to L; at Mt during deformation. After deformation,
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the absolute position vector of an arbitrary point P1 in the cross section S; is then expressed
as shown in eqn (1) below, where i is a unit vector perpendicular to the x-y plane and is
equal to the cross product i x y.

--r;=OPr= OOs + OsO; +11310PrI131+0tMt+ MtPr
'--y--' '-y-----" ''---~,r-------'

xs(t)x+ys(t)f' a constant (Xj+Ui)Xj+t',J\ '1,{Yicos(}j-_iisin(}j)+Ci

(I)

In the above equation, 11; and (; = Z; are the local coordinates of point Pt relative to Mt.
As indicated above, the vectors 75lJ", and osdi are known quantities.

As mentioned earlier, the work presented here will be restricted to the class of structures
where the behavior of each beam in the system can be approximated as inextensional (i.e.,
its length, after deformation, is equal to its undeformed length). For such problems, the
following constraint conditions holds for each beam element, where primes denote partial
differentiation with respect to Si'

(2)

Both 8i(Si' t) and ui(s;, t) can be eliminated from the formulation by expressing them in
terms of the bending deflection Vi(Si, t). The constraint condition, eqn (2), yields the
expression for u; in terms of v;, while 8.(s;, t) can be expressed in terms of v;(s;, t) by noticing
that sin 8Js;, t) = v;(s;, t).

To investigate the dynamic response of the structure about its equilibrium state, the
bending deflection v.(s;, t) for each element of the structure is first expressed as

(3)

where vie(s;) is the static equilibrium bending deflection, and Vis(Si, t) is a perturbation about
the equilibrium. To clarify the notation adopted here, a subscript e will always be used to
denote the equilibrium value of a variable, such as vie(s;) (which stands for the equilibrium
v-deflection along element i). A subscript s, in turn, is used to indicate a perturbed state of
a variable about its equilibrium (such as ViseS;, t), which stands for the perturbed v-deflection
along element i).

By solving eqn (2) for u;(s;, t) in terms of v;(s;, t) = v;e(s;) + v;s(s;, t), expanding the
solution in power series in the perturbation deflection, truncating the series to the fourth
degree in the perturbation, and by noticing that sin 8is (Si) = v;s(s;) and
cos 8ie (s;) = 1+ U;e(s;), the following expression is obtained for u;(s;, t). The symbol ~

denotes "equal to by definition".

(4)

In addition, the following expression for 8.(s;, t) is also obtained by expanding
8i(Si' t) = arcsin [v;e(s;) +v;s(s;, t)].

I [I I 2 ] '3 sin 8ie 2 II '4+ --3~ "6 + "2 tan 8;e Vis + 5 [3 +5 tan Uie]Vis +...
cos 8ie 8 cos 8ie

The differential equations that govern the motion of any point M i on an arbitrary
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beam element i of the structure can be obtained either by a vectorial approach using
Newton's second law, or by a variational formulation. The use of either is a matter of
individual preference. Because of its relative simplicity in handling even the most complex
systems and, at the same time, because it eliminates, at the beginning of the formulation,
all the constraint forces (which are forces whose virtual work is zero), the variational
formulation will be used. Here, as in Crespo da Silva and Glynn (1978a) and in Crespo da
Silva (1991), use will be made of Hamilton's extended principle (e.g., Lanczos, 1966; Pars
1975; Washizu, 1975; Meirovitch, 1970) to generate the differential equations of motion
for the system. For this, the expressions for the kinetic energy of the motion, and for the
virtual work done by the forces acting on the system are needed.

By making use of eqn (1) for the position vector for an arbitrary point of an element
of the structure, the specific (i.e., per unit length) kinetic energy, Ti , associated with the
motion of any element i of the structure is then obtained as shown in the following
expression, where Jc = Ss, 11; dm i and overdots denote partial differentiation with respect
to time.

(6)

The integral that appears in the last term in eqn (6) is zero if the reference line Li is
chosen to be the line that passes through the mass centroids of the consecutive cross sections
Si' To simplify the expression for the specific kinetic energy, such choice will then be made
from now on. The term proportional to {)J in eqn (6) is recognized as the kinetic energy
due to rotation of the cross section S;, while the terms that are independent of (}i constitute
the kinetic energy due to translation of the reference point Mi' Since the distributed mass
moment of inertia of a thin beam is a very small quantity, the kinetic energy due to rotation
of the cross section is several orders of magnitude smaller than the kinetic energy due to
translation of M i and, thus, will be neglected. Such approximation is also consistent with
neglecting the effect of shear.

Let the structure also carry an arbitrary number N eone of concentrated masses along
its span, each of mass M; ,and moment of inertia Ji (where ieone = 1,2, ... , Neone)' The
expression for the kineti~n~nergy, T ioon,' associated with the motion of an arbitrary con­
centrated mass Mi,nnc is then

1 .2.2.2 ,2 ' . , ,T =-M [x +y +u· +v· +2(xu· +yv· )COSIX.
'cone 2 'cone S S 'eone leone S 'cone S 'cone 'cone

2( ' . ..). ] 1J (J' 2+ u· - X V· sm IX· + -. .YS 'eone S 'eone 'eone 2 'eone 'eone

- e. [it cos (J + v sin (J. + x COS(IX + (J )
leone 'eone 'cone 'eone 'cone.'i 'eone 'eone

+y' sin(lX. +(J. )] f n dM
S 'eone leone ., 'eone leone

Mi"nn<;

(7)

The integral that appears in eqn (7), is equal to M;oonc times the offset distance between
the reference axis of the element to which mass M i is attached, and the center of mass of
M i • For simplicity, this offset distance will be ;~t to zero from now on (which implies
th~t"Cthe mass centroid of each lumped mass is at the reference line Li).
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For the derivation of the expression for the specific strain energy, U;, for the general
case that involves bending and extension, and when the element's reference line Li does not
pass through the area centroid of the cross section 5;, the reader is referred to Crespo da
Silva (1988a). If Li for element i is chosen to pass through the area centroid of Si (which is
a simplifying assumption that will be adopted from now on, thus implying that the mass
and area centroids of Si coincide with each other), and if the beam's material is Hookean,
the expression for the specific strain energy for an inextensional element is simply

(8)

where Di = E;Ii = EiSS, 1/; dAi is the element's bending stiffness.
The specific gravitational potential energy for element i, Ui ,is (except for a constant)

",av

given by eqn (9) shown below. The quantity g is the acceleration of gravity. The potential
energy associated with a concentrated mass M i is of the same form as eqn (9), with the
subscript i replaced by iconc and with mi replaced"by M i •

cone

U- = m·.i ; 'y' = m·g[y (t)+ (x·+u.) sina+v.cosa]19rav ll) J I S I I I I I
(9)

As indicated before, the differential equations of motion for each beam element will
be developed using Hamilton's variational principle, which can be written as eqn (10) below
(where Si

co
", denotes the value of Si, along beam element i, where M icone is located).

f.
'2 Nelem iLl {I

M~8 r ~~~+~+~+~
t=/ 1 1=1 0

+2(XSui+Ysv;) cos a; + 2(YA - XSvi) sin a;] - D/J;2 } dSidt

r" {Ncone [1+8 J~tl i~l ~MicoJX;+Y;+u;+v;

+2(xA+Ysv;) cosai+2(YA-xsv;) sin a;] + ~JiconeM l~si }dt
, COlIC

r'2 rL, Ne1em

- J~II Jo i~l mig[(cos ai)8v; + (sin a;)8u;] ds; dt

-f~'l (;e [Mie"ng[(COSa;)8vi+(Sinai)8U;]1~sl~Jdt+ f~'l 8Wdt = 0 (10)

In eqn (10), 8W is an expression of the form

(11)

and denotes the total virtual work of all other forces that are not accounted for by the
strain and potential energies (i.e., damping and applied forces).

One way to proceed with the formulation consists in adjoining Nbea:ms constraint
equations, each of which has the form of eqn (2), to eqn (10) with N beams Lagrange
multipliers, and then performing the variations in that equation to obtain 2 X N beams equa­
tions that involve the variables ui(s;, t) and vi(s;, t) for each beam, as first done in Crespo da
Silva and Glynn (1978a) for a single beam. The Lagrange multipliers and the variables Ui
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can be eliminated from the resulting equations in order to obtain Nbeams nonlinear integro­
partial differential equations for the bending deflection Vi(Si, t) for each beam. An approxi­
mate solution based on a perturbation expansion applied to such equations would then be
generated, in conjunction with a modal reduction technique based on Galerkin's method
for example.

For a single beam, this "route" is convenient, but for a structure with a number of
beams that make arbitrary angles ("J.i #- 0 with other adjacent beams, such route is clearly
not convenient because one would end up with a large number ofcoupled partial differential
equations to analyze the motion.

Another way to proceed with the formulation is to use a modal reduction approxi­
mation directly in eqn (10) in order to model the dynamics of the entire structure by a
set of reduced-order nonlinear ordinary differential equations of motion truncated to a
predetermined degree in the perturbation. This is the route that will be used here, and, as
in previous work, nonlinearities up to cubic order in the perturbations will be retained in
the differential equations that will be generated. To this end, the perturbed bending deflec­
tion vis(s;, t) ofeach beam element i is approximated by an expansion in terms ofan arbitrary
number n of "modal functions" as given in eqn (12) below. Note that retention of the
fourth degree terms in eqn (12) is necessary, since some of the coefficients of the variation
bv, that appear in eqn (10), such as the ones associated with the potential energy, will give
rise to cubic order terms in the final differential equations of motion.

n nnl nnn

V,,(Si' t) = J~=l f,/sJqj(t) +j~l k~l 2. a2iJkqit)qk(t) +j~l k~l '~1 a3ijklqit)qk(t)q,(t)

n n n n

+ L L L L a4'jk,3i t)qk(t)q,(t)qm(t) +. .. (12)
j= I k~ I ,= 1 m~ I

In the above fourth-degree expansion for the bending deflection of an arbitrary element
i in terms of the n modal functions f(J = 1,2, ... , n) for that element, the coefficients a2i ,, jk
a3i and a4i are constants. The sum of the terms that depend on these quantities in eqn

}kl ;kfm ~

(12) is the Yi component of the vector O;O~, shown in Fig. I, which is viewed by element i
as an equivalent "base motion" for its leftmost point O~. That equivalent "base motion"
is, in turn, due to the motion of another element (or elements) that may be attached to that
same point. The quantities a21 , a3i and a4i can be determined by dividing each beam in

Ik }kl ]klm

the structure into straight elements and then spanning the structure, element by element,
starting with any support whose motion is known. For an element i, connected to a support
with no motion relative to Os (see Fig. I), a2ijk = a3ijk, = a4ijk'rn = O.

By substituting the above expression for Vis(Si, t) into eqn (4), and integrating the
resulting equation for u;(s;, t) = u;e(sJ +u;s(s;, t), the following expanded expression for
u,,{s;, t), which is needed in eqn (10), is obtained.

n nn} nnn

uis(s;, t) = L bi/sJqj(t) + L L 2.Cijk (si)qit)qk(t) + L L L gijk,(SJqit)qk(t)q,(t)
j= 1 j= 1 k~ I j~ I k= I ,~ 1

n n n n

+ L L L L hijk,Js)qj(t)qk(t)q,(t)qm(t) +... (13)
j~ 1 k~ 1 ,~ I m~ 1

where

b (S·) = b (0) - fS'(tan e )j'. (S) dsIj I ' j Ie I j l I

o
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(14)

The initial values bj(O), ... ,hj (0) for element i are determined from the ,xi component of
~ J jklm

the vector Opr shown in Fig. I. This is also done by spanning the structure element by
element, starting, as indicated above, at a support with no motion relative to point Os'

The modal expansions for vj(Sj, t) and u;(Sj, t) given by eqns (12) and (13), and the
expansion for ej(Sj, t) given by eqn (5) are now used in eqn (10). By performing the variations
indicated in that equation, and by integrating by parts terms that involve u,.Jui, v,.Jv;, fJ,.JfJ;,
and e;J();, the following nonlinear ordinary differential equations, with nonlinearities up to
the third degree in the bending deflection, eqns (IS), are obtained for the n modal coor­
dinates qit). The expressions for all the coefficients that appear in eqns (IS) are given in
the Appendix.

n n n

L [Mjkt]k +Kjkqd + L L [rx2jkHkq, + f32 jkl (ilkqy + f32 k/ikqd
k~1 k=I'=1

n n n

+ L L L [rx3jklrnQkq/qm + rx4jrnkJiJkQ/fQm + f34 jkIJiJkq/qmf + f34 kjIAkQ/Qml
k~ll~lm~1

+ fourth and higher order polynomial nonlinearities

n n n

= Ql j+ L Q2 jkqk+ L L Q3 jk1qkq/ (j= 1,2, ... ,n)
k~l k~ll~1

(IS)

The quantities Ql
j

' Q2jk and Q3jkl that appear in the right hand side of eqns (IS) are
generalized nonconservative forces associated with the n generalized coordinates qj' They
are obtained from the expression for (j W given by eqn (II) and are given as shown in eqns
(16) below. The terms associated with the components x,(t) and ys(t) of a prescribed "base
excitation" of the entire structure produce both direct excitation terms (which are those
associated with the coefficients E 1uj and E 1v) and parametric excitation terms (which are
the terms associated with the coefficients E 2uk , E 2v . , E 3uk and E3v ). The terms associated

J ;k J I Jkl

with the coefficients Q I, Q2. and Q3. also produce the same type of excitation terms when
J Jk }k!

distributed forces that are explicitly dependent on time are applied to the structure.

QI = N~miL; [F++Fb.lds
j L. vii i, UI 'i I

i= 1 Si=O

(16)

It can be readily shown that for a single beam with constant properties, and with
Ve = 0, the n ordinary differential equations obtained here, eqns (IS), are equivalent to the
ones that can be obtained from the partial differential equation (Sa) in Crespo da Silva and
Glynn (l978b). They are also equivalent to the ordinary differential equations that can be
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obtained for a beam with variable properties by using a modal reduction approximation in
the partial differential equation (lIb) in Crespo da Silva and Glynn (l978a).

The nonlinear differential equations developed here are in a form suited for inves­
tigations involving nonlinear motions of single or multi-beam structures using analytical
techniques, such as perturbation methods, and for the design and performance analyses of
linear or nonlinear control systems for those structures. Such investigations will be presented
in forthcoming publications by this author.

CALCULATION METHODOLOGY

The generation of eqns (15) and the calculation of the numerical values of the
coefficients of each of its terms was implemented in the form of a computer program. To
calculate the coefficients whose expressions are given in the Appendix, the user specifies the
location of each beam in a given undeformed structure, the properties of each beam (i.e.,
specific mass and stiffness), the location and values of the concentrated masses (if any) and
their moments of inertia, the loads, connections between the beams, and types of supports
(such as clamped, pinned-sliding, etc.).

With the above information, the equilibrium deformation and a user-specified number
N of modes of linearized vibration are determined numerically using a finite element
program. This author uses the "DYMORE" finite element program (Bauchau, 1993) with
a four-node mixed beam element (which uses the transverse deflection and bending moment
as primary degrees offreedom), but any other program that yields the nonlinear equilibrium
and the modes of vibration about the equilibrium may be used. For this finite element pre­
processing of the structure, the user also specifies the number of elements each beam is to
be divided into (naturally, the structure should be divided into enough elements so that the
results obtained are independent of the number of elements used).

Having the output of the finite element program, the user then chooses a subset Sn of
n ~ N modes to be used in the modal reduction formulation presented in the previous
section. The program that calculates the coefficients of all the terms in the reduced-order
differential equations of motion then uses the n selected modes contained in Sn as the
functions j;(sJ introduced in the previous section. By using such modes, one guarantees
that the sol~tion to the linearized counterpart to the differential equations of motion are in
agreement with the solution given by the finite element analysis when the same number of
basis functions are used in both solutions. The coefficients Mjb ~b r:l2ik!' etc., are then
calculated numerically and displayed, by the program that calculates them, together with
each term qt. q2>' .. ,qlq2, etc., they are associated with in each one of the n differential
equations of motion.

It is well known from the theory of nonlinear oscillations (Nayfeh and Mook, 1979;
Hagedorn, 1988, etc.) that modes whose natural frequencies Wt. W2' etc., are related as
INtwt +N2W2 +.. '1 ~ 0 (where Nt. N 2, ..• , are appropriate integers that depend on the
order of the nonlinearities in the differential equations) are prone to interact in a nonlinear
manner. Such interacting modes are said to be in internal resonance. The nonlinear differ­
ential equations of motion formulated in this paper allow the analyst to investigate such
nonlinear motions. For this, the user of the work presented here would include those modes
in the calculations of the coefficients of the terms in the reduced-order differential equations
of motion for a particular structure under investigation, and analyze the motion as in
Crespo da Silva and Zaretzky (1990) for example.

COMPARISON WITH FULL FINITE ELEMENTS AND EXPERIMENTAL RESULTS

In a recent paper presented in the literature (Bauchau and Botasso, 1994), the nonlinear
response of a single beam was used in order to compare the results obtained from finite
elements in space and time, and from a perturbation analysis. The results ofthe perturbation
analysis used in that comparison were based on the nonlinear differential equations
developed in Crespo da Silva and Glynn (1978b) for inextensional beams, and in Crespo
da Silva (l988b) for extensional beams (where the effects of all geometric nonlinearities,
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including curvature, inertia and mid-plane stretching, were accounted for). The results
reported in Bauchau and Botasso (1994) are shown in Figs I, 3 and 5 in that reference.
They are essentially the same as the analytical results shown in Fig. 2 in Crespo da Silva
and Glynn (1978b) and in Fig. 1 in Crespo da Silva (1988b).

Although the objective in Bauchau and Botasso (1994) was to stress the versatility of
a numerical procedure, the results obtained in that reference clearly demonstrated that an
analytical investigation based on a reduced-order differential equation model can yield
extremely accurate results. Such models are highly desirable to an analyst since they can be
used to predict the response of the structure and, at the same time, allow one to analytically
determine the effect ofvarious parameters in the response and define regions, in the system's
parameter space, where nonlinear effects cannot be neglected in predicting the response. In
addition, if one were to design a control system (using optimal control theory, for example)
taking into account the effect of the nonlinearities as the structure undergo elastic defor­
mations, the use of explicit differential equations of motion is a necessity.

An in-depth experimental investigation of the effects of nonlinearities in both the
planar and the non-planar responses of vertical clamped-free beams to external periodic
excitations was presented in Zaretzky and Crespo da Silva (1994). The experiments
described in that reference were performed using laboratory techniques that are not depen­
dent on a linear response. They yielded experimental results that are in excellent agreement
with the analytical predictions obtained in Crespo da Silva and Glynn (1978b) by applying
Galerkin's modal reduction technique to the nonlinear partial differential equations first
developed in Crespo da Silva and Glynn (1978a). As mentioned earlier, the resulting
ordinary differential equations that can be obtained from Crespo da Silva and Glynn
(1978b) for a single beam are equivalent to eqns (15) developed in this paper since the
values for the coefficients of similar terms in both equations are the same.

EXAMPLES OF APPLICAnON

Two new examples are now presented in order to illustrate the use of the formulation
developed here to obtain the reduced-order nonlinear differential equations of motion of a
given structure. In the examples presented below, the structures are subjected to a base
excitation rs = x,(t)x+ ys(t)y. The analysis of the response of a number of complex struc­
tures is beyond the scope of this paper and will be presented in future publications.

In the absence of external excitation, damping in the system will, of course, cause any
initial motion imparted to the structure to "die out" and the system will return to its
equilibrium state with the passage of time. However, if the structure is excited with a
periodic function for which its Fourier representation has a frequency component n that
is near either one of the natural frequencies of the structure or a multiple of a natural
frequency Wi (such as n near Wj, 2W2' 3wb etc.), the response is likely to exhibit a phenom­
enon that is known as an external nonlinear resonance, where the nonlinearities can playa
significant role in determining the system's response. In addition, if the system also exhibits
internal resonances, the response will be dominated by the modes with frequencies equal
to the external and internal resonance frequencies, and modes with other frequency com­
ponents will die out due to damping. As indicated earlier, a number of papers in the
nonlinear oscillations literature have shown that the system's response in such cases is
drastically different from that obtained from the linearized differential equations.

The examples below illustrate the process of generating the differential equations for
investigating nonlinear motions in the presence of resonances. As mentioned earlier, such
equations are especially suited for using a number of analytical perturbation methods such
as those presented in detail in Nayfeh and Mook (1979). These methods date back from
the time of the pioneer work of a number of great mathematicians, including the celebrated
work of Poincare (Poincare, 1892).

The first example consists of a uniform horizontal cantilever of length L, of constant
cross section with stiffness D Newton.meters2

, and specific mass m Kg/meter. The beam is
carrying two lumped masses M 1 = 0.48M at s = L/4, and M 2 = O.5M at s = L/2, where
M = mL+M 1+M 2 is the total mass of the structure. The moments of inertia of the lumped
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Fig. 2. A horizontal cantilever with two concentrated masses.

masses are neglected for simplicity. The structure is shown in Fig. 2. For MLZg/D = 4,
where g = 9.81 meters/sz, a finite element pre-processing of the structure disclosed that its
first three natural frequencies, nondimensionalized by JD/(ML3), are W, ~ 6.63, Wz ~ 40.9
and W3 ~ 87.6. For the given load, the tip equilibrium deflection of this cantilever is
ve(s = L) = -0.261L.

Since the natural frequency of the third mode for this structure, W3, is near twice the
natural frequency Wz of the second mode, the structure is prone to exhibit nonlinear
interactions involving these two modes when the external excitation has a frequency com­
ponent n that is near the frequency of any of these modes. The nonlinear differential
equations of motion involving these two modes will be generated.

To generate the reduced-order nonlinear differential equations that are suited for
investigating the nonlinear interactions described above, the shape functions for the second
and third modes of the beam were used in the modal reduction technique presented in this
paper. With time nondimensionalized by JML 3/D, for convenience, and the bending
deflection of the beam and the base excitation displacement rs nondimensionalized by L,
the differential equations that were obtained are shown below. Overdots denote differ­
entiation with respect to normalized time. Structural damping is being modeled as viscous
modal damping, and is represented in these equations by the linear terms clq, and czqz, and
by the cubic terms c3,qi and c3zqL respectively. The cubic terms are included in order to
account for possible nonlinear damping effects as determined experimentally in Zaretzky
and Crespo da Silva (1994). The terms due to the external base excitation are those in the
right-hand side of the differential equations. For this example, a periodic excitation with a
Fourier frequency component n near one of the two natural frequencies being considered,
or near a multiple of these natural frequencies (such as n near W3' 2wz, 3W3' etc.), will
cause external nonlinear resonances where the nonlinearities in these equations will playa
significant role in the system's response. An external nonlinear resonance, without internal
modal interactions, will also occur when n ~ W, for example. The nonlinear differential
equation of motion for investigating such response is obtained by using the shape function
of the first mode for recalculating the coefficients of the various nonlinear terms in the
resulting equation. Single-mode differential equations involving the second and the third
modes for this structure are obtained by simply setting qz = 0 in eqn (17) and q, = 0 in eqn
(18).

iiJ + 1672ql +c,q, +C3lqi +O.l4qz +3.04[(q,ql)' +el,qd +2.77(q, qz)'

+ 332q, (q,qdO +48.1[(q,qzq,)' +ql (q,qz)"] +270(q,q~)'

+ elz(1.47q] + 1O.13qz +41.41qi +699q,qz +585qD

+qh6.09+451ql +607qz) +qi(2215+ 108,035q, +493,540qz)

+q~(33,072+ 2,299,382ql + 2,451,534qz) + 14, 151q] qz

= xs[0.0439 + 14.83q[ - 3.54q2 - 22.28qi -19.94q, qz - 26.06qn -0.477ys

elz + 7676qz + czqz + C32q~ +0.14q, + 8.49[(qzqz)' +elzqz] + 8.06(qzq])'

+ 1672qz(qzqz)' + 562[(qzq, qz)' +qz (qzq[)"] + 248(qzqi),

(17)
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Fig. 3. A three-beam structure with a concentrated mass.

+ql (1.47q] + 1O.13q2 +41.41qi +699qlq2 + 585qD

+lji(0.087+34.8ql +429q2)+qi(7075 + 164,5l3ql +2,299,382q2)

+q~(104,666+ 7,354,601q] + 8, 177,184q2) + 66, l43q] q2

= -:(,[0.05+3.54q] -8.96q2 +9.97qi +52qlq2 +39qn +0.102ys
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(18)

As indicated by eqns (17) and (18), the component of the external base excitation that
is perpendicular to the undeformed direction of the structure shown in Fig. 2 only gives
rise to a direct excitation term (which are the terms in yJ, while the is component of the
excitation produces both direct and parametric excitation terms. Some of the parametric
excitation terms will also produce a number of nonlinear resonances when the external
excitation is periodic.

It is interesting to notice that the differential equations ofmotion of a number of other
systems have the same general form of the above equations. Such is the case, for example,
of the model analyzed in Ibrahim et ai. (1988) and in Ibrahim and Li (1988) for the response
of an elevated water tower containing a liquid with a free surface, subjected to ground
motion.

The second example presented here consists of a three-beam vertical structure shown
in Fig. 3. Each beam in the structure is made of the same material and has the same mass
density m Kg/meter, and bending stiffness D Newton.mete~. The connection between the
beams is a weld, and the beam of length L I is vertical and is clamped to a support that is
subjected to a given base displacement rit) = xs(t)x+ ys(t)y. A small body of mass Ml> and
negligible moment of inertia, is attached to the end of the structure. The total length of the
structure is L = L] +L2+L3 and its total mass is M = mL+M I • For LdL = 0.6, L2/L = 0.3,
L 3/L = 0.1, MdM = 0.1, and ML2g/D = 1, the first three-nondimensional natural fre­
quencies for this structure are WI ~ 4.4, 0h ~ 12.7 and W3 ~ 53.6, with the time non­
dimensionalization factor chosen as JML3 /D sec. Since W2 ~ 3w], nonlinear interactions
involving the first and second modes, and caused by cubic nonlinearities in the system, are
prone to occur in this structure.

The reduced-order nonlinear differential equations of motion for this structure,
obtained by using the first and the second natural modes in the modeling presented in this
paper, are given below. In these equations, overdots denote differentiation with respect to
the normalized time used for this structure. The bending deflection of the structure and the
base displacement rs are also nondimensionalized by the total length L of the structure.
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ih + 19.17q[ +c[q[ +c3]qi -O.26q2 -O.145[(q]q[)' +q]qd -4.091(q]q2)'

+6.524q] (q[q[)' + 1.338[(q[q2q[)' +q] (q[q2)'] +5.596(q]qD'

-q2(O.OI2q[ +2.07q2 -2.79qi -14.74q[q2 -IO.67qD

- q~(2.74- 5.47q] -7.4lq2) +qi(7.136+96.3q[ + 277q2)

+q~(46.43 + 1580q] + 1120q2) + 23.65q[ q2

= -xs[0.725-1.035q] -1.613q2 +0.466qi + 1.472q]q2 + 1.207qn

+ Ys[0.35+ 1.715q[ -0.784q2 -0.346qi +0.257q[ q2 +0.173q~]

q2 + 161.1q2 +C2q2 +C32q~ -0.26q] + 1.86[(q2q2)' +q2q2]+ 1.34(q2qd'

+ 23.52q2 (q2q2)' + 13.9[(q2q] q2)' + q2 (Q2q])'] +9.27(Q2qi),

-th (O.012q[ +2.07q2 -2.79qi -14.74q[q2 -1O.67qD

+qi(2.034+4.25ql +9.15q2)+qi(l1.83+92.3q] + 1580q2)

+q~(l03.7+3360ql +2834q2)+92.9q]q2

= xs[0.513 + 1.613q] +2.619q2 -0.736qi -2.415q]q2 -2.045q~]

+ y,[0.475-0.784q] +0.298q2 +0.128qi +0.347q]q2 +0.636q~]

(19)

(20)

Unless L2 = 0, both the Xs and the Ys components of the external base excitation
produce parametric excitation terms in this structure. This occurs because the undeformed
structure is not a straight line when L 2 #- O.

The natural frequencies of the systems shown in Figs 2 and 3 depend, of course, on
several factors such as the location of the concentrated masses, on the number of such
masses, and on the values of the masses. The differential equations of motion for the
examples presented above exhibit internal nonlinear resonances. They also exhibit external
resonances when the base excitation is periodic and the frequency, n, of a component of
its Fourier series is near one of the natural frequencies of the system, or near a multiple of
a natural frequency Wi' These external resonances, which occur when n :::::: 2w;, n :::::: 3w;,
etc., may produce phenomena that are characterized by the fact that the actual motion
exhibited by the system bears no resemblance to the motion described by the linearized
differential equations.

CONCLUDING REMARKS

The work presented in this paper constitutes a hybrid formulation that combines the
advantages of both analytical and numerical methods to analyze a class of multi-beam
structures. Structures for which each beam in the structure behaves as inextensional were
considered in this paper.

A finite element pre-processing enables the analyst to deal with large structures and
provides information that is used for generating the coefficients of all the terms that appear
in the explicit differential equations of motion. The equations developed here allow for
each beam in the structure to have arbitrary property variations along its span. Such
equations model the nonlinear dynamics of the entire structure and allow the analyst to
perform investigations that would not be possible to conduct with numerical simulations
only. These investigations include the prediction and the analysis of nonlinear phenomena
exhibited by the structure, evaluation of the effect of structural nonlinearities in the per­
formance of control systems that are designed on the basis of linear theory only, and the
design of optimal control systems taking into account the effect of the nonlinearities in the
structure due to finite deformation of any of its members.
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Nonlinear motions can be drastically different from those predicted by using linearized
differential equations, and analytical investigations of such motions are crucial for under­
standing them. This author views the work presented here as a first step in the analytical
modeling of the dynamics ofmulti-beam structures. Extension of this work to more general
class of structures including extensional members, and, at the end of the complexity spec­
trum, to three-dimensional structures that can undergo flexure in any direction in space,
torsion and extension, is highly desirable.
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APPENDIX

The expressions for all the coefficients in the differential equations eqns (15), are given below. To calculate
them, each beam in the structure is divided into a desired number of elements whose length is L i ; Ne1em is the total
number of these elements in the structure.

N""'i
L

M;k =" 'm,(j, j, +bib, ) dSi'-' J" J Ie
i= I 5

i
=0

a',,'m = ~t,. fo {D,[(A"J;y(A,JV;/U' +2(A 2JV;,)'(A,J;/U'

+3(A ,J;JV;Y(A "JU' +4(J~(A4J;JV;/;m)')

+4m,g[gi",m sin ai +a4i,,'m cos ai]} dSi

+4g I: {Mi [h, sinai+a4' cosai]}'~'
i=1 oonc j/</", jJ<1m I '"""

N.. iL

a4 = ",. , mi[e,. C, +a" a2i ] dSijklm '- Jt 1m lie 1m
i= I S,=o



where
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N iL
Nfm , m,b)'j dSi + f' {Mj byj },~,

i=l J;=O I i=\ ~on' J ' '""",
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